
MATHEMATICS OF COMPUTATION
VOLUME 46, NUMBER 173
JANUARY 1986, PAGES 255-257

Computing When Multiplications Cost Nothing

By D. J. Newman*

Abstract. A (rather strange) computer is considered which costs 1? to perform each addition
but costs nothing to perform a multiplication. It is shown that the addition chain from 1 to n
cost maximally (Log n)l/2 ?o(1) rather than the classical - Log n.

Starting with the number 1, and performing additions of numbers we already
have, we find that we can reach any number we wish with exponential rapidity.
Thus, we can reach the number n in exactly Log n** such addition steps when n is a
power of 2, and only somewhat longer when n is not a power of 2. The obvious path
to other n is via binary digits and this takes perhaps 2 Log n steps. Less obvious is
Erdos' construction which gives n in - Log n steps.

Just to be perverse,we asked how many of these addition steps were necessary if
our hypothetical machine could perform multiplications absolutely free (machines
are not like that but perversity is). Of course this time there is no asymptotic answer
as there was before. There are very cheap numbers! Thus, every power of 2 is
achieved with only 1 addition. These are the 1? numbers. The number 23, on the
other hand is a 4? number, and so on. So now we must respect this difference and
define C(n) as the maximum cost of efficiently producing the number k, the
maximum taken over all k < n.

Another perverse fact about this paper is that this author had virtually nothing to
do with finding the answers! We did vaguely have the feeling that C(n) should be
"something like" VLog n, but it was Spencer*** and Rucza who separately supplied
the lower and upper bounds.

Since neither of these two clever mathematicians wanted to write up the results,
and since they both had such charming arguments, we decided to set them down.

THEOREM. C(n) = (Log n)1/2 + o(1), more precisely VLog n/Log Log 2n < C(n) <

5 VLog-n .

Spencer: This was basically a bit of very incisive bookkeeping.
Let us form a picture of just what happens in an arbitrary procedure, call it P,

with j addition steps and any number of multiplications. So denote by a, = a,,(P)
the number which is produced at the vth addition step of the procedure. After this
step there are a number of multiplications performed and numbers axiaX2 ... a>'

Received August 30, 1984.
1980 Mathematics Subject Classification. Primary 05A99, 05--04.
*Supported in part by NSF 550-382-01.
**As usual, Log means log2.
***Also, and independently, done by Z. Tuza.

?01986 American Mathematical Society

0025-5718/86 $1.00 + $.25 per page

255

256 D. J. NEWMAN

are produced. Thereby the next addition gives
a,,,

= aI' ...
a? + all ... a and

there are 2v description parameters (the exponents Xi and ju). Finally, after all j
additions have been made, there are multiplications performed and this results in
ala 2 ... as>, and there are j more descriptive parameters.

The total number of parameters, then, is 2 + 4 + 6 + ***+ 2(j - 1) +j =j2,

and the procedure P is exactly described by the j2-tuple of these parameters. (For
example, the 4-tuple (0, 3, 2,2) means the procedure: Form I + 1, form 1 + 23, form
22 (1 + 23)2, the end number being 324.)

We are now in a position to estimate the counting function of the integers costing
at most j4. Such a number might be formed by many procedures; some, perhaps of
<j additions, but we can, by ignoring some steps and ignoring duplications

estimate this counting function by the number of j-addition-procedures. This is
exactly equal to the number of j2-tuples and since we may assume that all the
parameters are bounded by Log n (or else the corresponding aX (a') would exceed
n). The result is that: The number of integers up to n which cost at most j4 is

*2
< (1 + Log n)j.

Thus, if (1 + Log n)j2 < n there is a number < n which is left out of this tally,
and this is to say C(n) > j. In other words, j < /Log n/Log Log 2n implies
j < C(n), and this proves that C(n) > VLog n/Log Log 2n .

Ruzca: We fix on a number n, and call the largest triangular number < Log n,
(i). For this j, we make a down payment of j ? by producing 2, 3, 5, 9,..., 1 + 2-1.
For this same j4 then, we also produce Sj, the set of all products

2"
1

(1 + 2').
some i<j

The following is essentially an old Putnam problem:

LEMMA. If x, decreases to 1 and x, < X,21, then every number between 1 and H x,
is equal to a subproduct, lV x,I.

Proof. The greedy algorithm! Given (we form its subproduct by taking, in turn,
the largest (earliest) xI that we can. Thus when xl, x1,2 . . ., x, have been chosen
with xl

x12
* - - - -XI < 4 then we define i,1+ as the first integer above i, for which

1 *x*-. -x1 < ((with the understanding that i,+I = co if i.. x. =
It is an easy induction that, at each stage, 1 < {/xix,2 *.. xl < xl. The conver-

gence of the subproduct to t follows from the fact that x, 1.
So let us return to n.
Write Logn = () + k + 0, j, k integral, 0 < k <j, 0 0 < 1. Clearly, 29 < 2

<H(1 + 2-') so that our lemma tells us that 26 = FH(1 + 2-'v). Multiplying through
by 2() + k then gives

n = 2m (2iv + 1) (1 + 2')
1v <j iv _Jo

where m = k + H < J; I not any IV i.

The number N = 2"liH <,(2'v + 1) is in our set S,, and furthermore, we have

0 < n - N= n(1 - H (1 + 2'^)-1 < n(1 - H(1 + 2?)) < n
iV >J i >-J '1 211"

COMPUTING WHEN MULTIPLICATIONS COST NOTHING 257

If we then subtract off M, the highest power of 2 below n - N, we obtain
0 < n' = n - N - M < n/2j, and this n' corresponds to a j' which is strictly
smaller than j.

We may now prove inductively that n is the sum of 2j - 1 numbers from S.. This
is clearly true for j = 1, which entails n = 1, and if we assume that n' is the sum of

2j' - 1 members of S1 (and hence of Sj), then n = n' + N + M is the sum of
2 j' - 1 + 2 < 2 1 - 1 such, and the induction is complete.

Altogether, then, the total cost of n is bounded by 2j - 1 + j, j being the cost of
the set Sj. Since 3j -1 5 / () for j > 2, we obtain, finally, C(n) < 5Log-n.

Department of Mathematics
Temple University
Philadelphia, Pennsylvania 19122

