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Computing When Multiplications Cost Nothing 

By D. J. Newman* 

Abstract. A (rather strange) computer is considered which costs 1? to perform each addition 
but costs nothing to perform a multiplication. It is shown that the addition chain from 1 to n 
cost maximally (Log n)l/2 ?o(1) rather than the classical - Log n. 

Starting with the number 1, and performing additions of numbers we already 
have, we find that we can reach any number we wish with exponential rapidity. 
Thus, we can reach the number n in exactly Log n** such addition steps when n is a 
power of 2, and only somewhat longer when n is not a power of 2. The obvious path 
to other n is via binary digits and this takes perhaps 2 Log n steps. Less obvious is 
Erdos' construction which gives n in - Log n steps. 

Just to be perverse,we asked how many of these addition steps were necessary if 
our hypothetical machine could perform multiplications absolutely free (machines 
are not like that but perversity is). Of course this time there is no asymptotic answer 
as there was before. There are very cheap numbers! Thus, every power of 2 is 
achieved with only 1 addition. These are the 1? numbers. The number 23, on the 
other hand is a 4? number, and so on. So now we must respect this difference and 
define C(n) as the maximum cost of efficiently producing the number k, the 
maximum taken over all k < n. 

Another perverse fact about this paper is that this author had virtually nothing to 
do with finding the answers! We did vaguely have the feeling that C(n) should be 
"something like" VLog n, but it was Spencer*** and Rucza who separately supplied 
the lower and upper bounds. 

Since neither of these two clever mathematicians wanted to write up the results, 
and since they both had such charming arguments, we decided to set them down. 

THEOREM. C(n) = (Log n )1/2 + o(1), more precisely VLog n/Log Log 2n < C(n) < 

5 VLog-n . 

Spencer: This was basically a bit of very incisive bookkeeping. 
Let us form a picture of just what happens in an arbitrary procedure, call it P, 

with j addition steps and any number of multiplications. So denote by a, = a,,(P) 
the number which is produced at the vth addition step of the procedure. After this 
step there are a number of multiplications performed and numbers axiaX2 ... a>' 
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are produced. Thereby the next addition gives 
a,,, 

= aI' ... 
a? + all ... a and 

there are 2v description parameters (the exponents Xi and ju). Finally, after all j 
additions have been made, there are multiplications performed and this results in 
ala 2 ... as>, and there are j more descriptive parameters. 

The total number of parameters, then, is 2 + 4 + 6 + ***+ 2(j - 1) +j =j2, 

and the procedure P is exactly described by the j2-tuple of these parameters. (For 
example, the 4-tuple (0, 3, 2,2) means the procedure: Form I + 1, form 1 + 23, form 
22 (1 + 23)2, the end number being 324.) 

We are now in a position to estimate the counting function of the integers costing 
at most j4. Such a number might be formed by many procedures; some, perhaps of 
<j additions, but we can, by ignoring some steps and ignoring duplications 

estimate this counting function by the number of j-addition-procedures. This is 
exactly equal to the number of j2-tuples and since we may assume that all the 
parameters are bounded by Log n (or else the corresponding aX (a') would exceed 
n). The result is that: The number of integers up to n which cost at most j4 is 

*2 
< (1 + Log n)j. 

Thus, if (1 + Log n)j2 < n there is a number < n which is left out of this tally, 
and this is to say C(n) > j. In other words, j < /Log n/Log Log 2n implies 
j < C(n), and this proves that C(n) > VLog n/Log Log 2n . 

Ruzca: We fix on a number n, and call the largest triangular number < Log n, 
(i ). For this j, we make a down payment of j ? by producing 2, 3, 5, 9,..., 1 + 2-1. 
For this same j4 then, we also produce Sj, the set of all products 

2" 
1 

(1 + 2'). 
some i<j 

The following is essentially an old Putnam problem: 

LEMMA. If x, decreases to 1 and x, < X,21, then every number between 1 and H x, 
is equal to a subproduct, lV x,I. 

Proof. The greedy algorithm! Given ( we form its subproduct by taking, in turn, 
the largest (earliest) xI that we can. Thus when xl, x1,2 . . ., x, have been chosen 
with xl 

x12 
* - - - -XI < 4 then we define i,1+ as the first integer above i, for which 

1 *x*-. -x1 < ( (with the understanding that i,+I = co if i.. x. = 
It is an easy induction that, at each stage, 1 < {/xix,2 *.. xl < xl. The conver- 

gence of the subproduct to t follows from the fact that x, 1. 
So let us return to n. 
Write Logn = ( ) + k + 0, j, k integral, 0 < k <j, 0 0 < 1. Clearly, 29 < 2 

<H(1 + 2-') so that our lemma tells us that 26 = FH(1 + 2-'v). Multiplying through 
by 2() + k then gives 

n = 2m (2iv + 1) (1 + 2') 
1v <j iv _Jo 

where m = k + H < J; I not any IV i. 

The number N = 2"liH <,(2'v + 1) is in our set S,, and furthermore, we have 

0 < n - N= n(1 - H (1 + 2'^ )-1 < n(1 - H(1 + 2? ) ) < n 
iV >J i >-J '1 211" 
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If we then subtract off M, the highest power of 2 below n - N, we obtain 
0 < n' = n - N - M < n/2j, and this n' corresponds to a j' which is strictly 
smaller than j. 

We may now prove inductively that n is the sum of 2j - 1 numbers from S.. This 
is clearly true for j = 1, which entails n = 1, and if we assume that n' is the sum of 

2j' - 1 members of S1 (and hence of Sj), then n = n' + N + M is the sum of 
2 j' - 1 + 2 < 2 1 - 1 such, and the induction is complete. 

Altogether, then, the total cost of n is bounded by 2j - 1 + j, j being the cost of 
the set Sj. Since 3j -1 5 / () for j > 2, we obtain, finally, C(n) < 5Log-n. 
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